

ANNUAL WATER QUALITY REPORT

Reporting Year 2024

Presented By
**City of
Washougal**

Our Commitment

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing performed between January 1 and December 31, 2024. Included are details about your sources of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information, because informed customers are our best allies.

Where Does My Water Come From?

The City of Washougal has two sources supplying our drinking water. Our main production facility is located on the west end of town at 411 Third Street. Production at this site started in 1942 with Well SO5. Through the years, as demand increased, four additional wells were drilled: SO6 in 1947, SO7 in 1954, S11 in 1983, and S13 in 2007. Our second source is primarily used in the summer and is located in Upper Hathaway Park at 2801 I Street. Here we have one active well, SO4, drilled in 1931. Combined, these two sources provided roughly 606 million gallons of clean drinking water last year.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through them.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water to prevent sediment accumulation in your hot water tank. Please contact us at (360) 835-2662 if you have any questions or if you would like more information on our water main flushing schedule.

How long can I store drinking water?

The disinfectant in drinking water will eventually dissipate, even in a closed container. If that container housed bacteria prior to filling up with the tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. Environmental Protection Agency (U.S. EPA)/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791) or epa.gov/safewater.

QUESTIONS?

The City of Washougal is dedicated to providing our community and all its visitors with drinking water of the highest quality. For more information about this report, or for any questions relating to your drinking water, please contact Ryan Baker, Public Works Operations Superintendent, at (360) 835-2662 or ryan.baker@cityofwashougal.us.

Substances That Could Be in Water

In order to ensure that tap water is safe to drink, the U.S. EPA and the Department of Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration and the Washington Department of Agriculture regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Additional Monitoring

The results of our quarterly PFAS test results for 2024 can be found at cityofwashougal.us/781/PFAS.

Lead in Home Plumbing

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Washougal is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, or doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute-accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact the City of Washougal at: (360) 835-8501. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. The lead service inventory is accessible at the water utility office. Please contact us at (360) 835-8501 if you would like more information about the inventory or any lead sampling that has been done.

Water Treatment Process

Our treatment process consists of two steps. First, chlorine is added as a precaution against any bacteria that may enter the system through line breaks or low pressure events. We carefully monitor the residual chlorine levels, adding the lowest quantity necessary to protect the safety of your water without compromising taste. Next, sodium hydroxide is added to adjust the pH in an effort to minimize the natural corrosion of pipes and plumbing fixtures. After treatment, the water is pumped to sanitized reservoirs, the distribution system, and into your home or business.

What Are PFAS?

Per- and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals used worldwide since the 1950s to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. During production and use, PFAS can migrate into the soil, water, and air. Most PFAS do not break down; they remain in the environment, ultimately finding their way into drinking water. Because of their widespread use and their persistence in the environment, PFAS are found all over the world at low levels. Some PFAS can build up in people and animals with repeated exposure over time.

The most commonly studied PFAS are perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). PFOA and PFOS have been phased out of production and use in the United States, but other countries may still manufacture and use them.

Some products that may contain PFAS include:

- Some grease-resistant paper, fast food containers/wrappers, microwave popcorn bags, pizza boxes
- Nonstick cookware
- Stain-resistant coatings used on carpets, upholstery, and other fabrics
- Water-resistant clothing
- Personal care products (shampoo, dental floss) and cosmetics (nail polish, eye makeup)
- Cleaning products
- Paints, varnishes, and sealants

Even though recent efforts to remove PFAS have reduced the likelihood of exposure, some products may still contain them. If you have questions or concerns about products you use in your home, contact the Consumer Product Safety Commission at (800) 638-2772. For a more detailed discussion on PFAS, please visit <http://bit.ly/3Z5AMm8>.

— BY THE NUMBERS —

5.1
TRILLION

The dollar value needed to keep water, wastewater, and stormwater systems in good repair.

12
THOUSAND

The average amount in gallons of water used to produce one megawatt-hour of electricity.

47.5
TRILLION

The amount in gallons of water used to meet U.S. electric power needs in 2020.

1.7
TRILLION

The gallons of drinking water lost each year to faulty, aging, or leaky pipes.

33%

The percentage of water sector employees who will be eligible to retire by 2033.

2

How often in minutes a water main breaks.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air-conditioning systems, fire sprinkler systems, irrigation systems), and sewer grinder pumps or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken.

REGULATED SUBSTANCES

Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Chlorine (ppm)	2023	[4]	[4]	0.7	0.4–1.2	No	Water additive used to control microbes
Gross Alpha	2024	15	0	2.7	2.70–2.70	No	Erosion of natural deposits
Haloacetic Acids [HAAs] (ppb)	2024	60	NA	1.2	ND–60	No	By-product of drinking water disinfection
Nitrate (ppm)	2024	10	10	2.0	0.559–10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Radium-228	2024	5	0	0.59	0.59–0.59	No	Erosion of natural deposits
TTHMs [total trihalomethanes] (ppb)	2024	80 ¹	NA	4.3	ND–80	No	By-product of drinking water disinfection
Turbidity (NTU)	2021	TT	NA	0.31	ND–0.31	No	Soil runoff

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Range Low-High	Sites Above AL/Total Sites	Violation	Typical Source
Copper (ppm)	2023	1.3	1.3	0.30	TBD	0/30	No	Corrosion of household plumbing systems, Erosion of natural deposits
Lead (ppb)	2023	15	0	3.2	TBD	0/30	No	Corrosion of household plumbing systems, Erosion of natural deposits

UNREGULATED SUBSTANCES

Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Conductivity (µS/cm)	2021	700	NA	140	98–140	No	Naturally occurring
Hardness (ppm)	2021	NA	NA	36	24–36	No	Naturally occurring
Sodium (ppm)	2021	NA	NA	11	9.2–11	No	Naturally occurring

¹Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system and may have an increased risk of getting cancer.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

µS/cm (Microsiemens per Centimeter): A unit expressing the amount of electrical conductivity of a solution

